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Abstract

Natural scene understanding is a challenging task, particu-
larly when confronted with images that involve occlusions
of multiple object parts. While existing de-occlusion meth-
ods have achieved some success in closed-class domains,
they still encounter significant challenges when applied to
more intricate open-world scenarios, where there are unre-
stricted image domains and classes. In this paper, we aim to
address the challenges associated with constructing training
instances for existing occlusion handling methods. Further-
more, we propose the novel utilization of a diffusion model
to tackle the de-occlusion problem, specifically focusing on
open-world scenarios. Extensive experiments on real-world
scenes demonstrate the superior performance of our approach
to other alternatives. Our envisioned framework holds the po-
tential to effectively handle de-occlusion in complex open-
world scenes, consequently enhancing scene understanding
capabilities for downstream tasks. By addressing these issues,
we can provide more accurate input data for the currently
popular 2D and 3D reconstruction tasks, thereby enhancing
the quality and accuracy of the generated results.

Introduction
In our everyday life, we often observe partially occluded ob-
jects. Humans can reliably recognize the visible parts of an
object and use them as cues to estimate the occluded parts.
This perception of the object’s complete structure under oc-
clusion is referred to as amodal perception(Nanay 2018).

A key problem in amodal perception is scene deocclusion,
which originates from the image Amodal completion and in-
volves the subtasks of recovering the underlying occlusion
ordering and completing the invisible parts of occluded ob-
jects. Existing computer vision systems can compete with
humans in understanding the visible parts of objects, but still
fall far short of humans when it comes to depicting the in-
visible parts of partially occluded objects(Zhan et al. 2020).

In many computer vision tasks, scene deocclusion is im-
portant to study, which able to acquire a full decomposition
of a scene, with only an image as input, which conduces to
a lot of applications, e.g. object-level image editing. In par-
ticular, autonomous vision systems applied in reality must

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Image after random masking processing

(b) Generate images after model completion

Figure 1: Complete image effect display

perform similar reasoning for occluded objects to guarantee
operational safety and reliability. For robotic grasping sys-
tems, the ability to infer the entire structure of an occluded
object from its visible parts allows the robot to directly grasp
and manipulate unseen objects in cluttered scenes. For self-
driving, the rapid identification of an object and its complete
spatial extent from local areas of the object in a complex
scene helps predict more accurately what is likely to happen
in the short future and thus plan accordingly. In addition, the
scene deocclusion task is a very important upstream work
for both 2D and 3D reconstruction. Through deocclusion,
more abundant entity semantic information can be obtained,
which can smooth obstacles to reconstruction.

Existing scene understanding systems mainly focus on
recognizing the visible parts of a scene, ignoring the in-
tact appearance of physical objects in the real world. To
decompose a scene into instances with completed appear-
ances is extremely challenging. This is be cause realistic nat-
ural scenes often consist of a vast collection of physical ob-
jects, with complex scene structure and occlusion relation-
ships, especially when one object is occluded by multiple
objects, or when instances have deep hierarchical occlusion
relationships. Another challenge in this novel task is the lack
of data: there is no complex, realistic dataset that provides



intact ground-truth appearance for originally occluded ob-
jects and backgrounds in a scene. The current approaches
is the requirement of detailed supervision of amodal object
masks either through human annotation(Patrick Follmann
and Ttger IEEE, 2019; Li and Malik Springer,2016; Lu Qi
and Jia June 2019) or by generating artificially occluded im-
ages(Xiaohang Zhan and Loy June 2020).

In this work, we introduce a self-supervised scene de-
occlusion approach based on the diffusion model. Our pro-
posed method addresses the significant disparity between
training and testing data distributions encountered by De-
occlusion(Xiaohang Zhan and Loy June 2020). We present
a novel paradigm for constructing self-supervised occlusion
removal data, training our model on the latest high-quality
open-world scene dataset, Entityseg. Our approach departs
from the conventional multi-stage occlusion recovery by
aligning more closely with human visual perception.

Our experiments used the most commonly used amodal
segmentation dataset: COCO Amodal(Lu Qi and Jia June
2019), showing comparable results to former approaches on
datasets of real scenes. In summary, we make several contri-
butions:

• We present a novel paradigm for constructing self-
supervised occlusion removal data;

• We propose the innovative application of a diffusion
model framework to tackle de-occlusion tasks;

• We validate the feasibility of this method on the open-
world dataset Entityseg;

• Our scene deocclusion framework has the ability as an
upstream task, to bring better results for 2D and 3D re-
construction tasks.

Related work
EntitySeg Dataset Numerous datasets have been proposed
for semantic, instance, and panoptic segmentation, e.g., Mi-
crosoft COCO(Lin et al. 2014), ADE20K(Zhou et al. 2017),
KITTI(Geiger, Lenz, and Urtasun 2012), PASCAL-VOC
(Everingham et al. 2010), OpenImages(Kuznetsova et al.
2020), and so on. In addition, there are some datasets spe-
cially designed for specific scenarios, such as amodal seg-
mentation (COCO-Amodal(Zhu et al. 2017), KINS(Qi et al.
2019)), human segmentation (CelebAMask-HQ(Lee et al.
2020), LIP(Gong et al. 2017), MHP(Zhao et al. 2018)) and
domain adaptation (Synscapes(Wrenninge and Unger 2018),
GTA5(Richter et al. 2016)). Despite the significant contribu-
tions from these datasets, there is still a need to fulfill the re-
quirements of real-world applications with high-quality im-
ages of large diversity.The EntitySeg dataset used in this
study consists of 33,227 images with high-quality mask an-
notations. Compared with existing datasets, it has three dis-
tinctive features. Firstly, 71.25% and 86.23% of the im-
ages are of high quality, with at least 2000px×2000px and
1000px×1000px, respectively, staying in line with the cur-
rent digital imaging trends. Secondly, our dataset is open-
world and not restricted to predefined classes. We consider
each semantically-coherent region in the images as an en-
tity, even if it is blurred or hard to recognize semantically.

Thirdly, the mask annotation along the boundaries is more
precise than those in other datasets.

Amodel completion Amodal completion is slightly dif-
ferent from amodal instance segmentation. In amodal com-
pletion, modal masks are given at test time and the task is
to complete the modal masks into amodal masks. Previous
works on amodal completion typically rely on heuristic as-
sumptions on the invisible boundaries to perform amodal
completion with given ordering relationships. Kimia et al.
(Kimia, Frankel, and Popescu 2003) propose to adopt Eu-
ler Spiral in amodal completion. Lin et al.(Lin et al. 2016)
use cubic B ezier curves. Silberman et al.(Silberman et al.
2014)apply curve primitives including straight lines and
parabolas. Since these studies still require ordering as the
input, they cannot be adopted directly to solve de-occlusion
problem. Besides, these unsupervised approaches mainly fo-
cus on toy examples with simple shapes. Kar et al.(Kar et al.
2015) use keypoint annotations to align 3D object templates
to 2D image objects, so as to generate the ground truth of
amodal bounding boxes. Ehsani et al. (Ehsani, Mottaghi,
and Farhadi 2018)leverage 3D synthetic data to train an
end-to-end amodal completion network. Similar to unsuper-
vised methods, our framework does not need annotations of
amodal masks or any kind of 3D/synthetic data. In contrast,
our approach, Self-Supervised Scene De-occlusion, can ad-
dress the challenge of complete scene amodal completion
in highly cluttered natural scenes, a task that other unsuper-
vised methods are unable to handle.

Controlling Image Diffusion Models Controlling Im-
age Diffusion Models facilitate personalization, customiza-
tion, or task-specific image generation. The image diffu-
sion process directly provides some control over color vari-
ation (Meng et al. 2021) and inpainting . Text-guided con-
trol methods focus on adjusting prompts, manipulating CLIP
features, and modifying cross-attention (Avrahami, Lischin-
ski, and Fried 2022; Brooks, Holynski, and Efros 2022;
Gafni et al.). MakeAScene (Gafni et al.) encodes segmenta-
tion masks into tokens to control image generation. SpaText
(Avrahami et al. 2022) maps segmentation masks into lo-
calized token embeddings. GLIGEN (Li et al. 2023) learns
new parameters in attention layers of diffusion models for
grounded generating. Textual Inversion and DreamBooth
(Ruiz et al. 2022) can personalize content in the gener-
ated image by finetuning the image diffusion model us-
ing a small set of user-provided example images. Prompt-
based image editing (Brooks, Holynski, and Efros 2022)
provides practical tools to manipulate images with prompts.
Voynov et al. (Voynov, Aberman, and Cohen-Or 2022) pro-
pose an optimization method that fits the diffusion process
with sketches. Concurrent works (Omer et al. 2023) exam-
ine a wide variety of ways to control diffusion models.The
ControlNet used in this study is a neural network architec-
ture that enhances large pretrained text-to-image diffusion
models through spatial localization and task-specific image
conditions. It facilitates a broader range of applications for
controlling image diffusion models.



(a) training stage (b) inference stage

Figure 2: The problem of distribution differences in the orig-
inal method

Method
Train
Overview. As described in algorithm 1, our approach be-
gins with the EntitySeg dataset, tailored for high-quality im-
age segmentation. To effectively address occlusion removal
in images, we propose a network architecture that combines
EntitySeg and the Diffusion Model, which we refer to as
MaskRemoveNet. This network leverages the CropFormer
model for image segmentation, merging global and local de-
tails to achieve precise image segmentation.

MaskRemoveNet uses CropFormer to create image
masks, providing high-quality training data. We then prepro-
cess the input, extract conditions, and use them to enhance
the performance of the Conditional Latent Diffusion Mod-
ule.

This module, comprising a Stable Diffusion module for
inpainting and a Control Net branch for specifying regions,
achieves superior results in revealing obscured content. Our
method combines these components to address the challenge
of occlusion removal in high-resolution images.

Given an input image zo, image diffusion algorithms pro-
gressively add noise to the image and produce a noisy image
zt, where t represents the number of times noise is added.
Given a set of conditions including time step t, global con-
dition cg , as well as a local condition cl, image diffusion
algorithms learn a network ϵθ to predict the noise added to
the noisy image zt with:

L = Ez0,t,cg,cf ,ϵ N(0,1)[||ϵ−ϵθ(zt,t,cg,cl)||2] (1)

where is the overall learning objective of the entire diffu-
sion model. This learning objective is directly used in fine-
tuning diffusion models with ControlNet.

EntitySeg (Qi et al. 2023) introduces a dataset called
EntitySeg and employs a model named CropFormer to
achieve high-quality image segmentation tasks. The Enti-
tySeg dataset comprises high-resolution and high-quality
images along with pixel-level mask annotations, character-
ized by open-world and non-predefined entity annotations as
well as precise boundary annotations, which are particularly
well-suited for our task of removing occlusions. CropFormer
is a multi-view fusion method based on Transformer, which
can effectively utilize global context information and local

detail information to achieve high-quality image segmenta-
tion. Utilizing CropFormer to segment images and generate
masks provides us with high-quality training data for our
task.

CropFormer. Given the high-quality and high-resolution
characteristics of the EntitySeg dataset, CropFormer was in-
troduced by EntitySeg to address the challenging problem
of instance-level segmentation on high-resolution images.
It enhances mask prediction by fusing high-resolution im-
age crops that provide finer-grained image details with com-
plete images. MaskRemoveNet employs CropFormer to seg-
ment images and obtain masks, which are used to construct
the dataset for subsequent training of the Conditional Latent
Diffusion Module.

Pre-Process. The MaskRemoveNet receives an image
with a mask as input. To generate the image with a mask,
we add a random mask that has been aligned to the image
to a random image to attain the input. The input is later
resized and removed occlusion in the pre-processing block
to extract global and local conditions which both feed to
the Conditional Latent Diffusion Module for better perfor-
mance. Meanwhile, the pre-processing module outputs the
Ground Truth as the input of the Latent Encoder.

Condition Latent Diffusion Model. Disregarding the en-
tirety of information may lead to the omission of crucial
details that could otherwise contribute to a better under-
standing of the problem or task at hand. This can result in
decision-making and solutions that are less comprehensive
or accurate. To address this issue, we simultaneously em-
ploy both global and local information as conditioning fac-
tors in the Condition Latent Diffusion Model to govern its
inpainting process. This approach yields superior results in
uncovering obscured content.

The training process of the Stable Diffusion model in-
volves using the frozen latent representation output from
the Latent Encoder as input, denoted as x0. Subsequently,
noise z is incrementally added to the sequence from x0 to
xt. These steps are designed to optimize the performance of
the Stable Diffusion model. During the training process, we
utilize the noise ẑ generated by the Stable Diffusion model
as the predicted noise and calculate the loss between ẑ and
the actual noise z. Ultimately, by subtracting ẑ from xt, we
obtain the image restored by the Stable Diffusion model.

To better understand this process, let’s briefly summarize:
starting from x0, we progressively generate an image se-
quence by introducing noise z. Then, by comparing the gen-
erated noise ẑ with the actual noise z, we guide the model
to learn more accurate representations. Finally, by remov-
ing the noise generated by the model from the final image,
we obtain the image reconstructed by the Stable Diffusion
model.

The key objective of this training process is to enhance
the model’s capabilities in data generation and restoration,
enabling it to precisely capture latent representations and ef-
fectively eliminate introduced noise.

As depicted in Figure 3 (bottom half), the Condition La-
tent Diffusion Model consists of a Stable Diffusion mod-
ule introduced by (Rombach et al. 2022) and a Control Net
branch from (Zhang, Rao, and Agrawala 2023). Stable Dif-



Figure 3: The pipeline of our proposed De-occlusion Method.

Algorithm 1: Training Procedure
Input: Original Image
Parameter: iteration
Output: Predicted noise z

1: masks = CropFormer(OriginalImage)
2: ConditionGlobal = masked(masks, OriginalImage)
3: Remove Complete Occlusion
4: ConditionGlobal = crop(ConditionGlobal)
5: Let iteration = iteration
6: while iteration do
7: predictedZ = ControleNet(noiseZ, OriginalImage,

ConditionGlobal, ConditionGlobal)
8: loss(predictedZ, noiseZ)
9: iteration = iteration - 1

10: end while

fusion module is applied for inpainting, aimed at restoring
occluded regions, while the ControlNet branch is utilized to
specify the exact regions to be restored, enhancing the over-
all inpainting efficacy.

Inference
As described in Algorithm 2, or a new input image,

the first step involves using CropFormer to summarize the
masks of all instances in the input image. Then, the process
enters a loop: for each instance, the corresponding mask is
removed from the image, and the region is repaired using an
inpainter (Stable Diffusion with ControlNet). Subsequently,
the repaired image is blended with the original image, and
CropFormer is called to segment the blended image. The re-
lationship between the generated masks (n2) at this point
and the original masks (n1) is established by calculating the
cost of their match.

Next, these generated masks are compared with the origi-
nal masks. If the added area exceeds a predefined threshold,
the original mask is replaced, effectively filling in the miss-
ing region.

Algorithm 2: Inference Procedure
Input: Original Image
Output: Recovered images

1: masks = CropFormer(OriginalImage)
2: Let iteration = masks.shape[0], i = 0
3: while iteration do
4: recover(OriginalImage, masks[i])
5: iteration = iteration - 1
6: end while

The core objective of this process is to iteratively repair
instance regions, ensuring that the newly generated masks
better match the original masks, thereby achieving precise
image restoration.

Experiments

We now evaluate our method in various applications includ-
ing ordering recovery, amodal completion, and amodal in-
stance segmentation.

Datasets. 1) COCOA (Yan Zhu and Dollar 2017) is
a subset of COCO2014 (Tsung-Yi Lin and Zitnick 2014)
while annotated with pairwise ordering, modal, and amodal
masks. We train PCNet on the training split (2,500 images,
22,163 instances) using modal annotations and test on the
validation split (1,323 images, 12,753 instances). The cate-
gories of instances are unavailable for this dataset. Hence,
we set the category ID constantly as 1 in training PCNet
for this dataset. 2) EntitySeg, originated from EntitySeg
(Qi et al. 2023), it contains 33,227 images with high quality
mask annotations. EntitySeg has three distinctive features.
Firstly, 71.25% and 86.23% of the images are of high qual-
ity. Secondly, this dataset is open-world and not restricted to
predefined classes. Thirdly, the mask annotation along the
boundaries is more precise than those in other datasets.



Table 1: Comparison of evaluation metrics for PCNet trained
on different datasets. ’acc allp’, ’acc occp’ and ’pAcc’ re-
fer to the accuracy of restoration without occlusion re-
lationships, the accuracy of using occlusion relationships
for restoration, and the accuracy of restoring all enti-
ties.‡indicates PCNet reproduced results

Train Dataset acc allp acc occp mIoU pAcc
PCNet-M 0.9601 0.8711 0.8134 0.8774
COCO‡ 0.9576 0.8597 0.8090 0.8743
EntitySeg 0.9680 0.8721 0.8139 0.8859

Table 2: Amodal completion on COCOA validation, using
ground truth modal masks.

method amodal (train) COCOA %mIoU

Supervised ✔ 82.53
Raw ✘ 65.47
ConvexR ✘ 74.43
PCNet(NOG) ✘ 76.91
PCNet(OG) ✘ 81.35

Our ✘ 81.60

Comparison Results

Dataset validity. To verify the high quality of the Entity-
Seg dataset, we only replaced the original PCNet dataset for
experimentation, replacing the training set from coco2014
to cocoa train, the testing will still be conducted on cocoa.
In Table 1, we used pre-trained PCNet-M (Zhang, Rao, and
Agrawala 2023) and compared the PCNet we replicated with
the PCNet replicated on EntitySeg (Qi et al. 2023). The PC-
Net trained on EntitySeg showed a comprehensive improve-
ment over the cocoa2014 metric, demonstrating the supe-
riority of the EntitySeg dataset and its adaptability to oc-
clusion removal tasks. Compared with COCO2014, which
has a more similar distribution, the PCNet trained on Enti-
tySeg also achieved better performance. Amodal Comple-
tion. We first introduce the baselines. For the supervised
method, amodal annotation is available. A UNet is trained
to predict amodal masks from modal masks end-to-end. Raw
means no completion is performed. Convex represents com-
puting the convex hull of the modal mask as the amodal
mask. PCNet improves this baseline by using predicted or-
der to refine the convex hull, constituting a stronger base-
line: ConvexR. PCNet(NOG) represents the non-ordering-
grounded amodal completion that relies on PCNet-M and
regards all neighboring objects as the eraser rather than us-
ing occlusion ordering to search the ancestors. PCNet(OG)
is PCNet ordering grounded amodal completion method.

We evaluate amodal completion on ground truth modal
masks, as shown in Table 2. Our method surpasses the base-
line approaches and PCNet method, which is comparable to
the supervised counterpart.

Table 3: Ablation study of constructing data methods was
conducted, and PCNet-M was trained on coco2014 and En-
titySeg, respectively, to verify the effectiveness of our data
construction method.

Train Dataset modified mIoU pAcc

COCO 2014 ✘ 0.8090 0.8743
✔ 0.8132 0.8854

EntitySeg ✘ 0.8139 0.8859
✔ 0.8197 0.8937

Ablation Study
In Table 3, the effectiveness of our data construction
method was verified by training PCNet-m in two ways on
COCO2014 and EntitySeg. Ticking the box indicates the use
of our data construction method, and the results show that
applying our method to different datasets can achieve better
results.

Conclusion
To summarize, we present a novel paradigm for constructing
self-supervised occlusion removal data. For the first time,
we introduce the use of a diffusion model framework to ad-
dress the occlusion removal task, aiming to approach the
problem in a manner more aligned with human visual per-
ception. We validate the feasibility of this method on open-
world datasets, achieving excellent performance on the cor-
responding benchmarks.

However, the approach comes with increased computa-
tional costs, yielding only marginal improvements in per-
formance. We also identify potential issues, such as the
emergence of data distributions that do not adhere to phys-
ical laws, which are not present in the training set. In re-
sponse, we are exploring an alternative approach by leverag-
ing single-view 3D reconstruction to tackle these challenges
comprehensively.
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